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ABSTRACT

A key input to any thermal infrared signature model is the environment, more specifically the model inputs specific
to the thermal infrared background model.  This paper describes a new method of analysing the climatic data for input to
ShipIR.  Historical hourly data from a stationary marine buoy are used to select a small number of data points (N=100) to
adequately cover the range of statistics (CDF, PDF) displayed by the original data set (S=46,072).  The method uses a coarse
bin (1/3) to subdivide the variable space (3 =243 bins), and a single-point ranking system to select individual points so that5

uniform coverage (1/N = 0.01) is obtained for each variable.  The selected data points are used in Vaitekunas and Kim (2013)
to demonstrate how the new methodology is used to provide a more rigorous and comprehensive analysis of platform IR
susceptibility based on the statistics of IR detection.
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1. INTRODUCTION

ShipIR/NTCS is a comprehensive software engineering tool for predicting the thermal infrared (IR) signature and
IR susceptibility of naval warships.  The ShipIR component consists of several sub-models, including the MODTRAN4 infrared
sky radiance and atmosphere propagation model, a proprietary sea reflectance model combining the methods of Mermelstein
(1994) with the results from Shaw and Churnside (1997) and Ross and Dion (2007).  The platform model is created from a
3D surface geometry that forms the basis of both a radiative heat transfer and in-band surface radiance model comprised of 
diffuse and specular multi-bounce reflections. An exhaust plume trajectory and IR emission model predicts the infrared
signature of diesel engine and gas turbine exhaust systems.  Internal heat sources are modelled via user-defined thermal
boundary conditions, simulating a complex thermal network of specified temperatures (controlled spaces), forced and natural
convection, heat-flux, and heat conduction.  Validation of the ShipIR model has been the topic of several research papers
(Vaitekunas and Fraedrich 1999, Fraedrich et al. 2003, Vaitekunas 2005).

The main purpose of climatic data in an infrared analysis is to model the effect on both ship signature and infrared
sensor detection.  In previous studies, a set of four backgrounds were typically used, denoting the worst possible (wp) and
best possible (bp) day (d) and night (n) operating scenarios.  Actual conditions were obtained using an analysis of the baseline
ship (skin-only) with monthly averages taken from the US Navy Marine Climatic Atlas of the World (USNMCAW) for a
specific area of interest (e.g., Eastern Sea).  Realising the previous analysis did not consider the variance in the monthly
statistics, attempts were made to analyse the standard deviations stored in the USNMCAW (Vaitekunas 2010).  These
previous results were incomplete for two reasons:

• the method did not analyse or account for the inherent correlation between each climatic variable,
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• pre-selection of values for each variable to produce a minimum, average, or maximum IR signature and IR
susceptibility failed to produce the desired result (i.e., average conditions showed a higher signature and IR
susceptibility than the worst or highest signature condition).

This paper will describe how a more rigorous method was developed to select the climatic data using existing historical data,
in this case a stationary marine buoy operated by the Korea Meteorological Administration (KMA) located in the Eastern
Sea (37.5EN, 130.0EE).  The objective of the new method is to take a small sample (N=100) from a much larger historical
data set (S=46,072) such that each individual variable is uniformly distributed in CDF (1/N = 0.01) over its range in the
original data while adequately sampling any non-uniformity in the distribution PDF.  The underlying objective is to provide
an adequate range of conditions under which a new or existing ship will operate, to capture the true expected value, E(x), and
the 5 , 50  and 95  percentiles in IR susceptibility.th th th

2. METHODS AND RESULTS

  Figure 1 contains 4 of the 10 possible 2D histograms for the five KMA climatic data variables:  air (Ta) and
sea (Ts) temperature, relative humidity (RH), wind speed (Ws) and direction (Wd).  The warmer colours indicate a higher
frequency or probability of occurrence of the data pair.  Higher frequencies concentrated along a curve, y = f(x), indicate a
high degree of correlation between the variables (e.g., air and sea temperature).  These results are significant since they
constitute the first evidence of correlation between the data.  To further quantify the correlation or dependency, Table 1
presents the correlation matrix as computed by the Analysis ToolPak in Microsoft Excel.  These results show a varied amount

Figure 1:  2D histograms for various pairs of data in the KMA marine buoy data.
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of correlation between the variables, ranging from 0.12 (low)
to 0.86 (high).  The sections to follow will describe the three
step process of coarse binning, single-point ranking, and point
selection used to obtain the N data points used in our IR
susceptibility analysis.

2.1 Coarse Binning

The large data set (S=46,072) is divided into large clusters containing 1/3 of each variable cumulative distribution
(CDF), which translates into 3  = 243 potential bins for the five variables (Ta, Ts, RH, Ws, Wd).  The purpose of coarse5

binning is to quickly isolate manageable collections of data to choose from with some degree of certainty about their
correlated probability of occurrence.  The cluster size (1/3) was chosen simply based on the number of points  (N = 100 # 3 ). 5

The coarse bins cover a large enough fraction of the total volume that their correlated probability can be estimated from n/S,
where n is the number of data in the bin and S is the size of the large data set (46,072).  Figures 2 and 3 show the individual
probabilities versus an arbitrary bin index, and their size distribution from smallest to largest, respectively.  These results
show that the frequency within each of these coarse bins varies by two orders of magnitude, and 45 of the 243 bins (18.5%)
are empty (n=0).

2.2 Single-Point Ranking

Contrary to coarse binning where large volumes of data are coalesced to compute a single probability (frequency),
the purpose of single-point ranking is to score individual points based on their suitability to fill a void in the data requirement.
Since the goal is to maximize coverage of individual variable CDF, the first obvious metric is the number of unused bins in
each variable CDF (1/N).  Given the two orders of magnitude difference between the low-probability and high-probability
regions of the variable space (Figure 2), the low-probability points should be selected first, employing the principle of grab
them while you can.  A  method is therefore required to calculate the probability of occurrence for individual data points
based on their individual CDF.

The simplest way to calculate a joint probability in m dimension space is to take the product of individual
(uncorrelated) probabilities for each variable.  Since all 5 variables are correlated to different degrees (see Table 1), a method
is needed to decorrelate the variable space.  Principle Component Analysis or PCA, a method commonly used to identify the
most meaningful basis to re-express a data set (Shlens 2009), is well suited to decorrelate the data.  The method uses a linear

1 2 3 4 5combination of the original data space X={Ta,Ts,RH,Ws,Wd} to define a new variable space Y={Y ,Y ,Y ,Y ,Y } such that
the covariance is a minimum and each successive dimension in Y is rank-ordered by its variance.  In our application, the order

Table 1:  correlation matrix for entire KMA data set.

Figure 2:  coarse bin probability distribution. Figure 3:  coarse bin size distribution.
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of the Y variables is not important since only the probability is needed for
point ranking .  Figure 4 contains the octave script used to perform the3

PCA.  The resulting linear transformation (PC) matrix and correlation on 
Y are shown in Tables 2 and 3, respectively. The Y results are clearly uncorrelated.  Using the uncorrelated Y, the joint
probability is calculated for each data point using the product of individual (uncorrelated) probabilities in Y.  The following

k,min k,maxdiscrete equation is used to obtain the probability in each k dimension of Y using the individual CDF from Y  to Y :

(1)

The results are then mapped to the original data point (unsorted) using its point ID, and multiplied by each k dimension:

(2)

and normalized to obtain a joint discrete probability value for each data point:

(3)

The following equation is now used to rank each point:

(4)

m is the number of slots available in the 1/N CDF of (Ta, Ts, RH, Ws, Wd).  All the variables start out with a value of m
greater than or equal to 5.  Some points will have a larger value of m if more than 1/N of the data share the same value.  This
occurs when the measurement resolution is insufficient to discriminate to within the desired resolution in CDF.  One example
is relative humidity which ranges from 12% to 100% with a resolution of 1% (88 bins).  Since the available slots will diminish
with each point selection, the above ranking needs to be recalculated at every step in the point selection process.

2.3 Point Selection Algorithm

A single data point (per coarse bin) is selected such that the resultant data set (N=100) has no repeats in the
CDF (1/N = 1/100) for each climatic input variable.  As described, each point is ranked based on its unlikelihood to reoccur
(1/Ptot) and the degree to which it fills an available slot in the CDF.  The first attempt to implement the algorithm used an
excel spreadsheet to sort the remaining unused bins (from least probable to most probable) and rank all the points within the
next available bin.  The coarse bins and data points with the least probability of occurrence were selected first since they are
unlikely to fill any unused slots in the CDF later in the process.  Since the first attempt involved manual intervention at every

load pca-in.txt;
[N,M] = size(pca_in);
mn = mean(pca_in);
X = pca_in - repmat(mn,N,1);
Cov = 1 / (N - 1 ) * X' * X;
[PC,V] = eig( Cov );
V = diag(V);
[junk,rindices] = sort( -1*V );
V = V(rindices);
PC = PC(:,rindices);
Y = X * PC;
save -ascii pca-out.txt Y;
save -ascii pca-mat.txt PC;
save -ascii pca-cov.txt Cov;
save -ascii pca-var.txt V;

Figure 4:  octave script for PCA

Table 2:  PC transformation matrix.

Table 3:  correlation matrix for the Y values.

 Originally we tried to use the PCA to select the data points by randomly generating a combination of Y values and3

transforming them back into X.  The results were invalid because the independent selection of Y does not provide any
control over where the points end up in the original variable space (a by-product of uncorrelating the data).
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step in the process, no allowance was made for reiteration.  As a result, some repeats in discrete CDF were allowed but their
occurrence was carefully controlled (manually) to make sure repeats only occurred once for the same CDF.  The algorithm
has since been implemented as a computer program, and further enhancements were added to avoid any repeats in CDF.  In
addition to re-ranking the data points in the bins already processed, and swapping points with a higher ranking (later in the
process), the method was found to be less biased towards the end if the coarse bins are randomly chosen from both the low
probability (CDF<0.5) and high probability (CDF>0.5) regions, in alternate succession.  Repeats were avoided by simply
increasing the initial size of the selection bin (N) until the closest number of points to the desired value (100) is obtained. 
In the KMA data set, an initial value of N=114 produced 101 data points with no repeats.  Figures 5 and 6 show the resultant
CDF values per sample level (1-100) for the manual and automated point selection algorithms, respectively.  A perfect
selection would be five (5) overlapping straight lines at 45Ewith one increment in CDF per sample level.  Repeats in one
variable cause a vertical step change in CDF for the same sample level, while missing values cause a horizontal step in value
(sample level) for the same CDF.  The closer these curves are to the ideal (45E) line, the better the selection algorithm
performs on the data set.  The benefits obtained through refinements in the automated algorithm are clearly obvious.

2.4 Resulting Statistics

The CDF and PDF obtained from the entire data set, and interpolated using the N=100 data points, are shown in
Figures 7 through 18.  These results provide the first evidence that all the distributions are non-Gaussian and that each
distribution has unique features likely to change from one geographic region to another (since they are rooted in the data set). 
Air and sea temperature and RH have two distinct peaks in probability.  Whereas sea temperature and wind speed
distributions are skewed towards the low end of their scales, air temperature and RH are skewed towards the high end of their
scales.  The Wind speeds follow a typical Weibull (Gamma) distribution where a majority of the data is recorded at moderate
levels while high winds do occur but less frequently.  Winds in the Eastern Sea are shown to have two prevalent directions
(South and Northwest).  Although not selected directly, the statistics for the air-sea temperature difference (ASTD) are shown
in Figure 18, and although the curves are not as smooth as the other Figures (a different calculation method was used to
calculate the CDF and PDF ), the results do illustrate two more features about the analysis: a) the distribution of the dependent4

variables (e.g., ASTD) are equally covered by the point selection process, b) the peak in ASTD is centred about -1°C – a fact
to consider when analysing the effectiveness of hull cooling using sea water spray (Vaitekunas and Kim, 2013).

Figure 5: resultant variable CDF from manual point selection. Figure 6:  resultant variable CDF from automated point selection.

 The automated computer analysis includes a special calculation of CDF and PDF which uses a minimum no. of4

samples (50) to calculate the average CDF and avoids any bias introduced by the minimum measurement resolution.
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Figure 7: sampled versus data set CDF for Ta. Figure 8: sampled versus data set PDF for Ta.

Figure 9:  sampled versus data set CDF for Ts. Figure 10:   sampled versus data set PDF for Ts.

Figure 11: sampled versus data set CDF for RH. Figure 12: sampled versus data set PDF for RH.
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Figure 13:  sampled versus data set CDF for Ws. Figure 14:   sampled versus data set PDF for Ws.

Figure 15: sampled versus data set CDF for Wd. Figure 16: sampled versus data set PDF for Wd.

Figure 17:  sampled versus data set CDF for ASTD. Figure 18:   sampled versus data set PDF for ASTD.
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3. SUMMARY AND CONCLUSION

A new methodology of analysing historical recordings of climatic data has been presented.  The method uses data
from a stationary marine buoy to select a small number of data points (N=100) to adequately cover the range of statistics
(CDF, PDF) displayed by the original data set (S=46,072).  Both a manual and automated point selection algorithm were
described which utilize coarse binning (243 bins) and single-point ranking to identify the most likely candidates to fulfill the
data requirement for a small representative data set.  The single-point ranking system uses Principle Component Analysis
(PCA) to decorrelate the input variables and compute a joint probability of occurrence for each data point.  Special care was
taken to handle situations where the CDF bin resolution was higher than the measurement resolution (e.g., RH), and further
remove any potential bias from the procedure as the number of available bins diminish.  The resultant data points are used
by Vaitekunas and Kim (2013) to provide a more rigorous and comprehensive analysis of platform IR susceptibility based
on the statistics of IR detection.

4. FUTURE WORK

Some of the existing meteorological ground stations (closest to the marine buoy) include a global solar radiation
sensor (pyranometer) and thermal radiation sensor (pyrgeometer).  The MODTRAN atmosphere model could be used to test
for clouds, and determine a suitable cloud altitude and extinction value for input to ShipIR.  The methods used to filter the
historical data for bad readings and dead bands (i.e., wind speed and direction) and unbias the resultant data (after the removal
of bad data) will be discussed in another paper, which will also compare the statistics from different climatic
regions (e.g., North Atlantic, Persian Gulf, North Sea).
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